Comparison of Tumor Uptake Heterogeneity Characterization Between Static and Parametric 18F-FDG PET Images in Non-Small Cell Lung Cancer.
نویسندگان
چکیده
UNLABELLED (18)F-FDG PET is well established in the field of oncology for diagnosis and staging purposes and is increasingly being used to assess therapeutic response and prognosis. Many quantitative indices can be used to characterize tumors on (18)F-FDG PET images, such as SUVmax, metabolically active tumor volume (MATV), total lesion glycolysis, and, more recently, the proposed intratumor uptake heterogeneity features. Although most PET data considered within this context concern the analysis of activity distribution using images obtained from a single static acquisition, parametric images generated from dynamic acquisitions and reflecting radiotracer kinetics may provide additional information. The purpose of this study was to quantify differences between volumetry, uptake, and heterogeneity features extracted from static and parametric PET images of non-small cell lung carcinoma (NSCLC) in order to provide insight on the potential added value of parametric images. METHODS Dynamic (18)F-FDG PET/CT was performed on 20 therapy-naive NSCLC patients for whom primary surgical resection was planned. Both static and parametric PET images were analyzed, with quantitative parameters (MATV, SUVmax, SUVmean, heterogeneity) being extracted from the segmented tumors. Differences were investigated using Spearman rank correlation and Bland-Altman analysis. RESULTS MATV was slightly smaller on static images (-2% ± 7%), but the difference was not significant (P = 0.14). All derived parameters, including those characterizing tumor functional heterogeneity, correlated strongly between static and parametric images (r = 0.70-0.98, P ≤ 0.0006), exhibiting differences of less than ±25%. CONCLUSION In NSCLC primary tumors, parametric and static baseline (18)F-FDG PET images provided strongly correlated quantitative features for both standard (MATV, SUVmax, SUVmean) and heterogeneity quantification. Consequently, heterogeneity quantification on parametric images does not seem to provide significant complementary information compared with static SUV images.
منابع مشابه
Triage of Limited Versus Extensive Disease on 18F-FDG PET/CT Scan in Small Cell lung Cancer
Objective(s): Small cell lung cancer (SCLC) is an aggressive neuroendocrine carcinoma, which accounts for 10-15% of pulmonary cancers and exhibits early metastatic spread. This study aimed to determine the added value of 18F-FDG PET/CT imaging in tumor, node, and metastasis (TNM) staging of SCLC, compared to the conventional computed tomography (CT) scan and its potential role as a prognosticat...
متن کاملPrognostic value of various metabolic parameters on pre-treatment 18-F-FDG PET/CT in patients with stage I-III non-small cell lung cancer
Background: the aim of this study was to investigate the prognostic value of 18Fluorine-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) parameters in both overall survival and progression-free survival in Stage I-III non-small cell lung cancer (NSCLC). Materials and Methods: In this retrospective study, 267 patients who were diagnosed as Stage I-III non-smal...
متن کاملA Prospective Study Comparing Functional Imaging (18F-FDG PET) Versus Anatomical Imaging (Contrast Enhanced CT) in Dosimetric Planning for Non-small Cell Lung Cancer.
Objective(s): 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET-CT) is a well-used and established technique for lung cancer staging. Radiation therapy requires accurate target volume delineation, which is difficult in most cases due to coexisting atelectasis. The present study was performed to compare the 18F-FDG PET-CT with contrast enhanced computed tomogr...
متن کاملBackground-Based Delineation of Internal Tumor Volumes on Static Positron Emission Tomography in a Phantom Study
Objective(s): Considering the fact that the standardized uptake value (SUV) of a normal lung tissue is expressed as x±SD, x+3×SD could be considered as the threshold value to outline the internal tumor volume (ITV) of a lung neoplasm. Methods: Three hollow models were filled with 55.0 kBq/mL fluorine18- fluorodeoxyglucose (18F-FDG) to represent tumors. The models were fixed to a barrel filled w...
متن کاملImpact of Various Image Reconstruction Methods on Joint Compensation of Respiratory Motion and Partial Volume Effects in Whole-Body 18F-FDG PET/CT Imaging: Patients with Non-Small Cell Lung Cancer
Background: The present study aims to assess the impact of various image reconstruction methods in 18F-FDG PET/CT imaging on the quantification performance of the proposed technique for joint compensation of respiratory motion and partial volume effects (PVEs) in patients with non-small cell lung cancer. Materials and Methods: An image-based deconvolution technique was proposed, incorporating w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of nuclear medicine : official publication, Society of Nuclear Medicine
دوره 57 7 شماره
صفحات -
تاریخ انتشار 2016